Что нужно указать для задания функции

Функция. Способы задания функций.

Функция является заданной, иначе говоря, известной, если для каждого значения возможного числа аргументов можно узнать соответствующее значение функции. Наиболее распространенные три способа задания функции: табличный, графический, аналитический, существуют еще словесный и рекурсивный способы.

1. Табличный способ наиболее широко распространен (таблицы логарифмов, квадратных корней), основное его достоинство – возможность получения числового значения функции, недостатки заключаются в том, что таблица может быть трудно читаема и иногда не содержит промежуточных значений аргумента.

Аргумент х принимает заданные в таблице значения, а у определяется соответственно этому аргументу х.

2. Графический способ заключается в проведении линии (графика), у которой абсциссы изображают значения аргумента, а ординаты – соответствующие значения функции. Часто для наглядности масштабы на осях принимают разными.

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функции

Например: для нахождения по графику у, которому соответствует х = 2,5 необходимо провести перпендикуляр к оси х на отметке 2,5. Отметку можно довольно точно сделать с помощью линейки. Тогда найдем, что при х = 2,5 у равно 7,5, однако если нам необходимо найти значение у при х равном 2,76, то графический способ задания функции не будет достаточно точным, т.к. линейка не дает возможности для столь точного замера.

Достоинства этого способа задания функций заключаются в легкости и целостности восприятия, в непрерывности изменения аргумента; недостатком является уменьшение степени точности и сложность получения точных значений.

3. Аналитический способ состоит в задании функции одной или несколькими формулами. Основным достоинством этого способа является высокая точность определения функции от интересующего аргумента, а недостатком является затрата времени на проведение дополнительных математических операций.

4. Словесный способ состоит в задании функции обычным языком, т.е. словами. При этом необходимо дать входные, выходные значения и соответствие между ними.

Словесно можно задать функцию (задачу), принимающуюся в виде натурального аргумента х с соответствующим значением суммы цифр, из которых состоит значение у. Поясняем: если х равно 4, то у равно 4, а если х равно 358, то у равен сумме 3 + 5 + 8, т. е 16. Далее аналогично.

5. Рекурсивный способ состоит в задании функции через саму себя, при этом значения функции определяются через другие ее же значения. Такой способ задания функции используется в задании множеств и рядов.

При разложении числа Эйлера задается функцией:

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функции

Ее сокращение приведено ниже:

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функции

При прямом расчёте возникает бесконечная рекурсия, но можно доказать, что значение f(n) при возрастании n стремится к единице (поэтому, несмотря на бесконечность ряда, значение числа Эйлера конечно). Для приближённого вычисления значения e достаточно искусственно ограничить глубину рекурсии некоторым наперёд заданным числом и по достижении его использовать вместо f(n) единицу.

Источник

Функция. Способы задания функций.

Функция является заданной, иначе говоря, известной, если для каждого значения возможного числа аргументов можно узнать соответствующее значение функции. Наиболее распространенные три способа задания функции: табличный, графический, аналитический, существуют еще словесный и рекурсивный способы.

1. Табличный способ наиболее широко распространен (таблицы логарифмов, квадратных корней), основное его достоинство – возможность получения числового значения функции, недостатки заключаются в том, что таблица может быть трудно читаема и иногда не содержит промежуточных значений аргумента.

Аргумент х принимает заданные в таблице значения, а у определяется соответственно этому аргументу х.

2. Графический способ заключается в проведении линии (графика), у которой абсциссы изображают значения аргумента, а ординаты – соответствующие значения функции. Часто для наглядности масштабы на осях принимают разными.

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функции

Например: для нахождения по графику у, которому соответствует х = 2,5 необходимо провести перпендикуляр к оси х на отметке 2,5. Отметку можно довольно точно сделать с помощью линейки. Тогда найдем, что при х = 2,5 у равно 7,5, однако если нам необходимо найти значение у при х равном 2,76, то графический способ задания функции не будет достаточно точным, т.к. линейка не дает возможности для столь точного замера.

Достоинства этого способа задания функций заключаются в легкости и целостности восприятия, в непрерывности изменения аргумента; недостатком является уменьшение степени точности и сложность получения точных значений.

3. Аналитический способ состоит в задании функции одной или несколькими формулами. Основным достоинством этого способа является высокая точность определения функции от интересующего аргумента, а недостатком является затрата времени на проведение дополнительных математических операций.

4. Словесный способ состоит в задании функции обычным языком, т.е. словами. При этом необходимо дать входные, выходные значения и соответствие между ними.

Словесно можно задать функцию (задачу), принимающуюся в виде натурального аргумента х с соответствующим значением суммы цифр, из которых состоит значение у. Поясняем: если х равно 4, то у равно 4, а если х равно 358, то у равен сумме 3 + 5 + 8, т. е 16. Далее аналогично.

5. Рекурсивный способ состоит в задании функции через саму себя, при этом значения функции определяются через другие ее же значения. Такой способ задания функции используется в задании множеств и рядов.

При разложении числа Эйлера задается функцией:

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функции

Ее сокращение приведено ниже:

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функции

При прямом расчёте возникает бесконечная рекурсия, но можно доказать, что значение f(n) при возрастании n стремится к единице (поэтому, несмотря на бесконечность ряда, значение числа Эйлера конечно). Для приближённого вычисления значения e достаточно искусственно ограничить глубину рекурсии некоторым наперёд заданным числом и по достижении его использовать вместо f(n) единицу.

Источник

Что такое Функция?

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функции

7 класс, 11 класс, ЕГЭ/ОГЭ

Понятие функции

Определение функции можно сформулировать по-разному. Рассмотрим несколько вариантов, чтобы усвоить наверняка.

1. Функция — это взаимосвязь между величинами, то есть зависимость одной переменной величины от другой.

Знакомое обозначение y = f (x) как раз и выражает идею такой зависимости одной величины от другой. Величина у зависит от величины х по определенному закону, или правилу, которое обозначается f.

Вывод: меняя х (независимую переменную, или аргумент) — меняем значение у.

2. Функция — это определенное действие над переменной.

Значит, можно взять величину х, как-то над ней поколдовать — и получить соответствующую величину у.

В технической литературе можно встретить такие определения функции для устройств, в которых на вход подается х — на выходе получается у. Схематично это выглядит так:

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функции

В этом значении слово «функция» используют и в далеких от математики областях. Например, так говорят о функциях ноутбука, костей в организме или даже о функциях менеджера в компании. В каждом перечисленном случае речь идет именно о неких действиях.

3. Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества. Это самое популярное определение в учебниках по математике.

Например, в функции у = 2х каждому действительному числу х ставит в соответствие число в два раза большее, чем х.

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функции

область определения выглядит так:

И записать это можно так: D (y): х ≠ 0.

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x2 — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Для примера рассмотрим соответствие между двумя множествами — человек-владелец странички в инстаграм и сама страничка, у которой есть владелец. Такое соответствие можно назвать взаимно-однозначным — у человека есть страничка, и это можно проверить. И наоборот — по аккаунту в инстаграм можно проверить, кто им владеет.

В математике тоже есть такие взаимно-однозначные функции. Например, линейная функция у = 3х +2. Каждому значению х соответствует одно и только одно значение у. И наоборот — зная у, можно сразу найти х.

Источник

Определение функции. Способы задания функции.

Что значить задать функцию? Какими способами можно задать функцию? Что такое определение функции?

Задать функцию — это значит указать правило, при задании любого значения аргумента x вы найдете значение функции y.

Функция y=f(x) – зависимость переменной y от переменной x. Когда задаем значение аргумента x, получаем единственное значение функции y.

Способы задания функции.

В данной статье рассмотрим 3 способа задания функции. На самом деле их больше, в школьной программе чаще всего разбирают эти способы задания функции.

Аналитический способ задания функции.

Чаще всего в школьной программе правило задают в виде формулы y=f(x), x∈X или нескольких формул. Такой способ задания функции называется аналитическим.

Примеры аналитического задания функции:

Графический способ задания функции.

Также если по формуле построить график функции, то данный способ задания функции будет называться графическим. Не всегда вам будут давать график совместно с формулой. Иногда вам в заданиях будут давать только график функции, по которому вы должны будете найти определенные данные. По графику функции можно восстановить его формулу, но это не всегда легко сделать, все зависит от начерченного графика. В школьной программе вам будут задавать графики, по которым вы сможете рассчитать формулу.

Примеры, графического задания функции:

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функцииЧто нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функцииЧто нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функцииТабличный способ задания функции.

Следующий способ задания функции применяется чаще всего на практике называется табличный.

Все данные представлены в виде таблице. У этого способа имеется конечное множество значений аргумента. Такими таблицами вы уже пользовались в алгебре, например, таблица квадратов, таблица корней и т.д.

Примеры, табличного задания функции:

x123456789
y149162536496481

Рассмотрим примеры по теме «Способы задания функции»:

Пример №1:

Является ли графическим заданием какой-либо функции фигура?

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функцииСколько бы мы не проводили вертикальных линий, всегда будет одно пересечение с графиком. Следовательно, изображенная фигура является графиком функции.

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функцииПример №2:

Является ли графическим заданием какой-либо функции фигура?

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функции

Сколько бы мы не проводили вертикальных линий, всегда будет одно пересечение с графиком. Следовательно, изображенная фигура является графиком функции.

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функцииПример №3:

Является ли графическим заданием какой-либо функции фигура?

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функцииПри проведении вертикальных линий у нас имеется два пересечения. То есть у одной вертикальной линии два пересечения с фигурой. По определению переменной x должно соответствовать только одно значение переменной y, а у нас два пересечения фигуры. Следовательно, данная фигура не является графиком функции.

Источник

Способы задания функций

Что нужно указать для задания функции. Смотреть фото Что нужно указать для задания функции. Смотреть картинку Что нужно указать для задания функции. Картинка про Что нужно указать для задания функции. Фото Что нужно указать для задания функции

Существуют следующие способы задания функции y = f ( x ) :

Явный аналитический способ задания функции

Вот несколько примеров явного задания функции с независимой переменной x и зависимой переменной y :
;
;
.

Интервальный способ задания функции

При интервальном способе задания функции, область определения разбивается на несколько интервалов, и функция задается отдельно для каждого интервала.

Вот несколько примеров интервального способа задания функции:

Параметрический способ задания функции

При параметрическом способе, вводится новая переменная, которую называют параметром. Далее задают значения x и y как функции от параметра, используя явный способ задания:
(1)

Вот примеры параметрического способа задания функции, используя параметр t :

Также этот способ применяется для упрощения расчетов. Например, зависимость координат точек эллипса с полуосями a и b можно представить так:
.
В параметрическом виде этой зависимости можно придать более простую форму:
.

Неявный способ задания функции

Задание функции рядом

Исключительно важным способом задания функции является ее представление в виде ряда, составленного из известных функций. Этот способ позволяет исследовать функцию математическими методами и вычислять ее значения для прикладных задач.

В качестве иллюстрации, вычислим значение синуса от 30°, используя разложение (5).
Переводим градусы в радианы:
.
Подставляем в (5):

.

Табличный способ задания функции

Табличный способ применяется в прикладных науках. До развития вычислительной техники, он широко применялся в инженерных и других расчетах. Сейчас табличный способ применяется в статистике и экспериментальных науках для сбора и анализа экспериментальных данных.

Графический способ задания функции

При графическом способе, значение функции определяется из графика, по оси абсцисс которого откладываются значения независимой переменной, а по оси ординат – зависимой.

Графический способ дает наглядное представление о поведении функции. Результаты исследования функции часто иллюстрируют ее графиком. Из графика можно определить приближенное значение функции. Это позволяет использовать графический способ в прикладных и инженерных расчетах.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *