Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ аксиома, Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ аксиомы

Аксиома β€” это ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚ Π²Π΅Ρ€Π½Ρ‹ΠΌ ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ Π½ΡƒΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ. Π’ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π΅ с грСчСского «аксиома» Π·Π½Π°Ρ‡ΠΈΡ‚ принятоС ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ β€” Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ взяли ΠΈ Π΄ΠΎΠ³ΠΎΠ²ΠΎΡ€ΠΈΠ»ΠΈΡΡŒ, Ρ‡Ρ‚ΠΎ это истина, с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π΅ ΠΏΠΎΡΠΏΠΎΡ€ΠΈΡˆΡŒ.

АксиоматичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ β€” это ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΡŽ Π·Π½Π°Π½ΠΈΠΉ, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ сначала Ρ€Π°Π·Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°ΡŽΡ‚ аксиомы, Π° ΠΏΠΎΡ‚ΠΎΠΌ с ΠΈΡ… ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‚ Π½ΠΎΠ²Ρ‹Π΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ.

Π‘ΠΈΠ½ΠΎΠ½ΠΈΠΌ аксиомы β€” постулат. Антоним β€” Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π°.

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ аксиомы Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π£Ρ‡ΠΈΡ‚ΡŒ Π½Π°ΠΈΠ·ΡƒΡΡ‚ΡŒ эти аксиомы Π½Π΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ. Π“Π»Π°Π²Π½ΠΎΠ΅ β€” ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ ΠΎ Π½ΠΈΡ… ΠΈ Π΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ ΠΏΠΎΠ΄ Ρ€ΡƒΠΊΠΎΠΉ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΡΠΎΡΠ»Π°Ρ‚ΡŒΡΡ Π½Π° ΠΎΠ΄Π½Ρƒ ΠΈΠ· Π½ΠΈΡ….

А Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Π΄Π°Π²Π°ΠΉΡ‚Π΅ рассмотрим нСсколько аксиом ΠΈΠ· Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π·Π° 7 ΠΈ 8 класс.

Бамая извСстная аксиома Π•Π²ΠΊΠ»ΠΈΠ΄Π° β€” аксиома ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых. Π—Π²ΡƒΡ‡ΠΈΡ‚ ΠΎΠ½Π° Ρ‚Π°ΠΊ:

Π­Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ Ссли Π΄Π°Π½Π° прямая ΠΈ любая Ρ‚ΠΎΡ‡ΠΊΠ°, которая Π½Π΅ Π»Π΅ΠΆΠΈΡ‚ Π½Π° этой прямой, Ρ‚ΠΎ Ρ‡Π΅Ρ€Π΅Π· Π½Π΅Ρ‘ ΠΌΠΎΠΆΠ½ΠΎ провСсти Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Ρƒ Π΅Π΄ΠΈΠ½ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ ΠΏΡ€ΡΠΌΡƒΡŽ, которая Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° этой ΠΏΠ΅Ρ€Π²ΠΎΠΉ Π΄Π°Π½Π½ΠΎΠΉ прямой.

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

Π£ этой аксиомы Π΄Π²Π° слСдствия:

Аксиома АрхимСда Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ, Ссли ΠΎΡ‚Π»ΠΎΠΆΠΈΡ‚ΡŒ достаточноС число Ρ€Π°Π· мСньший ΠΈΠ· Π΄Π²ΡƒΡ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΡŒ больший ΠΈΠ· Π½ΠΈΡ…. Π—Π²ΡƒΡ‡ΠΈΡ‚ Ρ‚Π°ΠΊ:

Если Π½Π° прямой Π΅ΡΡ‚ΡŒ мСньший ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ А ΠΈ больший ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ B, Ρ‚ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠ»ΠΎΠΆΠΈΡ‚ΡŒ А достаточноС количСство Ρ€Π°Π·, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΡŒ B.

На ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ, ΠΊΠ°ΠΊ это выглядит:

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

Из этого слСдуСт, Ρ‡Ρ‚ΠΎ Π½Π΅ сущСствуСт бСсконСчно ΠΌΠ°Π»Ρ‹Ρ… ΠΈ бСсконСчно Π±ΠΎΠ»ΡŒΡˆΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. Π’ качСствС матСматичСской Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ аксиому ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Ρ‚Π°ΠΊ: А + А + … + А = А * n > Π’, Π³Π΄Π΅ n β€” это Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ΅ число.

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ аксиома ΠΌΡ‹ ΡƒΠΆΠ΅ поняли, Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ ΡƒΠ·Π½Π°Π΅ΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° β€” логичСскоС слСдствиС аксиом. Π­Ρ‚ΠΎ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ основано Π½Π° аксиомах ΠΈ общСпринятых утвСрТдСниях, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Ρ‹Π»ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Π½Ρ‹ Ρ€Π°Π½Π΅Π΅, ΠΈ доказываСтся Π½Π° ΠΈΡ… основС.

Бостав Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹: условиС ΠΈ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ слСдствиС.

Π‘Ρ€Π΅Π΄ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ Ρ‚Π°ΠΊΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ сами ΠΏΠΎ сСбС Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΡΡ… Π·Π°Π΄Π°Ρ‡. Но ΠΈΡ… ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚Π΅ΠΎΡ€Π΅ΠΌ.

Π›Π΅ΠΌΠΌΠ° β€” это Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ Π»Π΅ΠΌΠΌΡ‹: Ссли ΠΎΠ΄Π½Π° ΠΈΠ· Π΄Π²ΡƒΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых пСрСсСкаСт ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, Ρ‚ΠΎ ΠΈ вторая прямая Ρ‚ΠΎΠΆΠ΅ пСрСсСкаСт эту ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ.

БлСдствиС β€” ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ выводится ΠΈΠ· аксиомы ΠΈΠ»ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹. БлСдствиС, ΠΊΠ°ΠΊ ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ слСдствий ΠΈΠ· аксиомы ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых:

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ β€” это процСсс обоснования истинности утвСрТдСния.

КаТдая доказанная Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° слуТит основаниСм Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° для ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹. ИмСнно поэтому Ρ‚Π°ΠΊ Π²Π°ΠΆΠ½ΠΎ ΠΈΠ·ΡƒΡ‡Π°Ρ‚ΡŒ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, пСрСходя ΠΎΡ‚ аксиом ΠΊ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°ΠΌ.

Бпособы Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° гСомСтричСских Ρ‚Π΅ΠΎΡ€Π΅ΠΌ

Π§Π°ΡΡ‚ΡŒ аналитичСского способа β€” Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΎΡ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ, ΠΊΠΎΠ³Π΄Π° для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π΄Π°Π½Π½ΠΎΠ³ΠΎ прСдлоТСния ΡƒΠ±Π΅ΠΆΠ΄Π°ΡŽΡ‚ Π² нСвозмоТности прСдполоТСния ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ.

ΠŸΡ€ΠΈΠ΅ΠΌΡ‹ для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ:

ΠžΠ±Ρ€Π°Ρ‚Π½Π°Ρ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° β€” это Ρ‚Π°ΠΊΠΎΠΉ ΠΏΠ΅Ρ€Π΅Π²Π΅Ρ€Ρ‚Ρ‹Ρˆ: Π² Π½Π΅ΠΉ условиС исходной Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ Π΄Π°Π½ΠΎ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ, Π° Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ β€” условиСм.

ΠŸΡ€ΡΠΌΠ°Ρ ΠΈ обратная Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° Π²Π·Π°ΠΈΠΌΠ½ΠΎ-ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅. НапримСр:

Π’ ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ Π΄Π°Π½Π½ΠΎΠ΅ условиС β€” это равСнство сторон Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π° Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ β€” равСнство ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΡ… ΡƒΠ³Π»ΠΎΠ². А Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ всё Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚.

ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Π°Ρ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° β€” это ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΈΠ· отрицания условия Π²Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ ΠΎΡ‚Ρ€ΠΈΡ†Π°Π½ΠΈΠ΅ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ.

Π’ΠΎΡ‚, ΠΊΠ°ΠΊ выглядит Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅:

Π’ гСомСтричСском ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ достаточно Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΄Π²Π΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹, Ρ‚ΠΎΠ³Π΄Π° ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ справСдливы Π±Π΅Π· Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°.

Записывайся Π½Π° ΠΎΠ½Π»Π°ΠΉΠ½ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ для ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ² с 1 ΠΏΠΎ 11 классы!

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Ρ‡Π΅Ρ€Π΅Π· синтСз

Рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Ρ€ синтСтичСского способа Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ°: сумма ΡƒΠ³Π»ΠΎΠ² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π½Π° Π΄Π²ΡƒΠΌ прямым.

Π”Π°Π½ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ: ABC. НуТно Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ A + B + C = 2d.

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ:

ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ ΠΏΡ€ΡΠΌΡƒΡŽ DE, Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ½Π° Π±Ρ‹Π»Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° AC.

Π‘ΡƒΠΌΠΌΠ° ΡƒΠ³Π»ΠΎΠ², Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… ΠΏΠΎ ΠΎΠ΄Π½Ρƒ сторону прямой, Ρ€Π°Π²Π½Π° Π΄Π²ΡƒΠΌ прямым, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ξ± + B + Ξ³ = 2d.

Π’Π°ΠΊ ΠΊΠ°ΠΊ Ξ± = A, Ξ³ = C, Ρ‚ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΠΌ Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌ равСнствС ΡƒΠ³Π»Ρ‹ Ξ± ΠΈ Ξ³ Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ ΠΈΠΌ ΡƒΠ³Π»Π°ΠΌΠΈ: A + B + C = 2d. Π§Ρ‚ΠΎ ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ.

Π—Π΄Π΅ΡΡŒ исходным ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π² Ρ†Π΅ΠΏΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π² Π²Ρ‹Π±Ρ€Π°Π½Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΎ суммС ΡƒΠ³Π»ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π»Π΅ΠΆΠ°Ρ‚ ΠΏΠΎ ΠΎΠ΄Π½Ρƒ сторону прямой. Π•ΡΡ‚ΡŒ связь с Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°ΠΌΠΈ ΠΎ равСнствС ΡƒΠ³Π»ΠΎΠ² накрСст-Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… ΠΏΡ€ΠΈ пСрСсСчСнии Π΄Π²ΡƒΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΡŽ косвСнною. ДоказываСмая Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° Π΅ΡΡ‚ΡŒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ слСдствиС всСх ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Ρ… Ρ‚Π΅ΠΎΡ€Π΅ΠΌ ΠΈ являСтся Π² Ρ†Π΅ΠΏΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π² послСдним Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Ρ‡Π΅Ρ€Π΅Π· Π°Π½Π°Π»ΠΈΠ·

Рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Ρ€ аналитичСского способа Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ°: Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ.

Π”Π°Π½ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ: ABCD.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ:

Если Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ, Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ AOB ΠΈ DOC Ρ€Π°Π²Π½Ρ‹.

РавСнство ΠΆΠ΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² AOB ΠΈ DOC Π²Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ ΠΈΠ· Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ AB = CD, ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ стороны ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° ΠΈ ∠α = ∠γ, ∠β = ∠δ, ΠΊΠ°ΠΊ накрСст-Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΡƒΠ³Π»Ρ‹.

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΌΡ‹ Π²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠ΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ замСняСтся Π΄Ρ€ΡƒΠ³ΠΈΠΌ ΠΈ Ρ‚Π°ΠΊΠΎΠ΅ Π·Π°ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ΡΡ Π΄ΠΎ Ρ‚Π΅Ρ… ΠΏΠΎΡ€, ΠΏΠΎΠΊΠ° Π½Π΅ Π΄ΠΎΠΉΠ΄Π΅ΠΌ Π΄ΠΎ ΡƒΠΆΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ прСдлоТСния.

Π’Π΅ΠΎΡ€Π΅ΠΌΡ‹ Π±Π΅Π· Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°: ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹ Ρ€Π°Π²Π΅Π½ суммС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΊΠ°Ρ‚Π΅Ρ‚ΠΎΠ².

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π² ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ нСсколько. Одно ΠΈΠ· Π½ΠΈΡ… Π·Π²ΡƒΡ‡ΠΈΡ‚ Ρ‚Π°ΠΊ: Ссли ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹ Π½Π° сторонах ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Ρ‚ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ большСго ΠΈΠ· Π½ΠΈΡ… Ρ€Π°Π²Π½Π° суммС ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ ΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ². На ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ΅ понятно, ΠΊΠ°ΠΊ это Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚:

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° косинусов: ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΎΠ΄Π½ΠΎΠΉ стороны Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π΅Π½ суммС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π΄Π²ΡƒΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… сторон минус ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ этих сторон Π½Π° косинус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ. Π’ Π²ΠΈΠ΄Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ это выглядит Ρ‚Π°ΠΊ:

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

Π³Π΄Π΅ a, b ΠΈ c β€” стороны плоского Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°,

Ξ± β€” ΡƒΠ³ΠΎΠ» Π½Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ² стороны Π°.

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

БлСдствия ΠΈΠ· Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ косинусов:

ΠŸΠΎΠ½ΡΡ‚ΠΈΡ свойств ΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ²

Π£ нас Π΅ΡΡ‚ΡŒ список аксиом ΠΈ ΠΌΡ‹ ΡƒΠΆΠ΅ Π·Π½Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΈ ΠΊΠ°ΠΊ Π΅Π΅ Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ. Π•ΡΡ‚ΡŒ Π΄Π²Π° Ρ‚ΠΈΠΏΠ° ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠΉ срСди Ρ‚Π΅ΠΎΡ€Π΅ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ часто Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ Π½ΠΎΠ²Ρ‹Ρ… Ρ„ΠΈΠ³ΡƒΡ€: свойства ΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ.

Бвойства ΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ β€” понятия ΠΈΠ· ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΉ ΠΆΠΈΠ·Π½ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΡ‹ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ.

Бвойство β€” Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒΡΡ для Π΄Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ². Π£ Π½ΠΎΡƒΡ‚Π±ΡƒΠΊΠ° Π΅ΡΡ‚ΡŒ ΠΊΠ»Π°Π²ΠΈΠ°Ρ‚ΡƒΡ€Π° β€” это свойство Π΅ΡΡ‚ΡŒ Ρƒ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π½ΠΎΡƒΡ‚Π±ΡƒΠΊΠ°. А Ρƒ элСктронной ΠΊΠ½ΠΈΠ³ΠΈ Ρ‚Π°ΠΊΠΎΠ³ΠΎ свойства Π½Π΅Ρ‚.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ гСомСтричСских свойств ΠΌΡ‹ ΡƒΠΆΠ΅ Π·Π½Π°Π΅ΠΌ: Ρƒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° всС стороны Ρ€Π°Π²Π½Ρ‹. Π­Ρ‚ΠΎ Π²Π΅Ρ€Π½ΠΎ для любого ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°, поэтому это β€” свойство.

Π’Π°ΠΊΠΎΠ΅ свойство ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡ‚Ρ€Π΅Ρ‚ΠΈΡ‚ΡŒ Ρƒ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. И ΠΊΠ»Π°Π²ΠΈΠ°Ρ‚ΡƒΡ€Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… устройствах, ΠΏΠΎΠΌΠΈΠΌΠΎ Π½ΠΎΡƒΡ‚Π±ΡƒΠΊΠ°. Из этого слСдуСт, Ρ‡Ρ‚ΠΎ свойства Π½Π΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ.

ΠŸΡ€ΠΈΠ·Π½Π°ΠΊ β€” это Ρ‚ΠΎ, ΠΏΠΎ Ρ‡Π΅ΠΌΡƒ ΠΌΡ‹ ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎ распознаСм ΠΎΠ±ΡŠΠ΅ΠΊΡ‚.

Π—Π²Π΅Π·Π΄Ρ‹ Π² Ρ‚Π΅ΠΌΠ½ΠΎΠΌ Π½Π΅Π±Π΅ β€” ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ сСйчас Π½ΠΎΡ‡ΡŒ. Если Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ Ρ…ΠΎΠ΄ΠΈΡ‚ с ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΌ Π·ΠΎΠ½Ρ‚ΠΎΠΌ β€” это ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ сСйчас ΠΈΠ΄Π΅Ρ‚ доТдь. ΠŸΡ€ΠΈ этом Π½ΠΎΡ‡ΡŒΡŽ Π½Π΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ Π²ΠΈΠ΄Π½Ρ‹ Π·Π²Π΅Π·Π΄Ρ‹, ΠΈΠ½ΠΎΠ³Π΄Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠ±Π»Π°Ρ‡Π½ΠΎ. Π—Π½Π°Ρ‡ΠΈΡ‚ это Π½Π΅ свойство Π½ΠΎΡ‡ΠΈ.

А Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ вСрнСмся ΠΊ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΈ рассмотрим Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABCD, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ AB = BD = 10 см.

ЯвляСтся Π»ΠΈ равСнство Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠΌ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°? Π£ Ρ‚Π°ΠΊΠΎΠ³ΠΎ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π³Π΄Π΅ AB = BD, Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ€Π°Π²Π½Ρ‹, Π½ΠΎ ΠΎΠ½ Π½Π΅ являСтся ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ. Π­Ρ‚ΠΎ свойство, Π½ΠΎ Π½Π΅ Π΅Π³ΠΎ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ.

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

Но Ссли Π² Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ стороны ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ AB || DC ΠΈ AD || BC ΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ€Π°Π²Π½Ρ‹ AB = BD, Ρ‚ΠΎ это ΡƒΠΆΠ΅ Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€ΠΈΡ‚Π΅ рисунок:

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

Иногда свойство ΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ эквивалСнтны. Π›ΡƒΠΆΠΈ β€” это Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ доТдя. Π£ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… явлСний Π½Π΅ Π±Ρ‹Π²Π°Π΅Ρ‚ Π»ΡƒΠΆ. Но Ссли ΠΏΡ€ΠΈΡ…ΠΎΠ΄ΠΈΡ‚ доТдь, Ρ‚ΠΎ Π»ΡƒΠΆΠΈ Π½Π° Π°ΡΡ„Π°Π»ΡŒΡ‚Π΅ Ρ‚ΠΎΡ‡Π½ΠΎ Π±ΡƒΠ΄ΡƒΡ‚. Π—Π½Π°Ρ‡ΠΈΡ‚, Π»ΡƒΠΆΠΈ β€” это Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ, Π½ΠΎ ΠΈ свойство доТдя.

Π’Π°ΠΊΠΈΠ΅ утвСрТдСния Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌ ΠΈ достаточным ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠΌ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ аксиома ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°

РСшСниС всСх Π·Π°Π΄Π°Ρ‡ Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ построСно Π½Π° логичСских рассуТдСниях. Π‘ ΠΈΡ… ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΡ‹ Ρ€Π΅ΡˆΠ°Π΅ΠΌ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΈΠ»ΠΈ Π²Ρ‹Π²ΠΎΠ΄ΠΈΠΌ Π½ΠΎΠ²Ρ‹Π΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°.

НСкоторыС ΠΈΠ· ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠΉ Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΌΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Π½Π΅ Π·Π°Π΄ΡƒΠΌΡ‹Π²Π°ΡΡΡŒ. Вспомним высказываниС, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΡ‹ ΡΠ»Ρ‹ΡˆΠΈΠΌ ΠΏΡ€ΠΈ самом ΠΏΠ΅Ρ€Π²ΠΎΠΌ знакомствС с Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ:
Β«Π§Π΅Ρ€Π΅Π· Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ провСсти ΠΏΡ€ΡΠΌΡƒΡŽ, ΠΈ ΠΏΡ€ΠΈΡ‚ΠΎΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΡƒΒ».

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

Но ΠΌΠΎΠΆΠ½ΠΎ Π»ΠΈ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ΅ рассуТдСниС Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠΌ?

Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ Β«Π§Π΅Ρ€Π΅Π· Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ провСсти ΠΏΡ€ΡΠΌΡƒΡŽ, ΠΈ ΠΏΡ€ΠΈΡ‚ΠΎΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΡƒΒ» Π½Π΅ являСтся Π΄ΠΎΠΊΠ°Π·Π°Π½Π½Ρ‹ΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠΎΡ‚ΠΎΠΌΡƒ, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ нарисовали рисунок ΠΈ ΠΏΠΎ рисунку Β«Π½Π° Π³Π»Π°Π·Β» стало всС понятно.

Π’ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ дСйствуСт ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ: «НС Π²Π΅Ρ€ΡŒ Π³Π»Π°Π·Π°ΠΌ своим, ΠΏΠΎΠΊΠ° Π½Π΅ докаТСшь ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ рассуТдСний».

Но Ρ‡Ρ‚ΠΎ Π½Π°ΠΌ Π² Ρ‚Π°ΠΊΠΎΠΌ случаС Π΄Π΅Π»Π°Ρ‚ΡŒ? Π’Π΅Π΄ΡŒ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ ΠΌΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ ΠΊΠ°ΠΊΠΈΠ΅-Ρ‚ΠΎ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Ρ‹Π΅ утвСрТдСния, Π½Π΅ Π·Π°Π΄ΡƒΠΌΡ‹Π²Π°ΡΡΡŒ ΠΎΠ± ΠΈΡ… истинности.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ аксиома

Π‘Π»ΠΎΠ²ΠΎ аксиома ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ ΠΎΡ‚ дрСвнСгрСчСского слова Β«axiomaΒ» β€” ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅.

Π‘ Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния учащихся, аксиома β€” Π»Ρ‘Π³ΠΊΠΈΠΉ способ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΡ‚Π»ΠΈΡ‡Π½ΡƒΡŽ ΠΎΡ†Π΅Π½ΠΊΡƒ. Достаточно просто Π²Ρ‹ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΡƒ. Π’Π΅Π΄ΡŒ Π½ΠΈΠΊΠ°ΠΊΠΈΡ… Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π² для аксиомы ΡƒΡ‡ΠΈΡ‚ΡŒ Π½Π΅ трСбуСтся.

ВсСго Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ насчитываСтся ΠΎΠΊΠΎΠ»ΠΎ 15 аксиом. Π’ школьном курсС ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π΄Π°Π»Π΅ΠΊΠΎ Π½Π΅ всС. НСкоторыС ΠΈΠ· Π½ΠΈΡ… ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² школьном курсС ΠΊΠ°ΠΊ само собой Ρ€Π°Π·ΡƒΠΌΠ΅ΡŽΡ‰Π΅Π΅ΡΡ для нас. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ довольно извСстных аксиом ΠΈΠ· школьного курса Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°

БовсСм ΠΏΠΎ-Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ обстоят Π΄Π΅Π»Π° с Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°ΠΌΠΈ. Π‘Π»ΠΎΠ²ΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° происходит ΠΎΡ‚ дрСвнСгрСчСского слова Β«theoremaΒ» β€” ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ, Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊΠΎΠ΅-Π»ΠΈΠ±ΠΎ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅.

Π’Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠΌΠ΅Π½Π΅Π΅ Β«Π»ΡŽΠ±ΠΈΠΌΡ‹Β» учащимися, Ρ‡Π΅ΠΌ аксиомы. Если ΡƒΡ‡ΠΈΡ‚Π΅Π»ΡŒ попросит Ρ€Π°ΡΡΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ, Π±ΡƒΠ΄Π΅Ρ‚ нСдостаточно, ΠΊΠ°ΠΊ для аксиомы, ΡΠΎΠΎΠ±Ρ‰ΠΈΡ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΅Ρ‘ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΡƒ. ΠŸΠΎΡ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ΡΡ Ρ‚Π°ΠΊΠΆΠ΅ Π΄Π°Ρ‚ΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΎΠΊ Ρ‚Π΅ΠΎΡ€Π΅ΠΌ:

КаТдоС слово ΠΈΠ»ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠ³ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠ΅ ΠΈΠ³Ρ€Π°Π΅Ρ‚ ΡΡƒΡ‰Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π΅ смысла выраТСния. Π”Π°ΠΆΠ΅ просто помСняв порядок слов ΠΌΠΎΠΆΠ½ΠΎ сильно ΠΈΠ·ΠΌΠ΅Π½ΠΈΡ‚ΡŒ смысл утвСрТдСния.

ΠŸΠΎΠΌΠ½ΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ всС Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠΈ Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π±Ρ‹Π»ΠΈ Π²Ρ‹Π²Π΅Ρ€Π΅Π½Ρ‹ нСсколькими тысячами Π»Π΅Ρ‚ развития ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π»ΡƒΡ‡ΡˆΠΈΠΌΠΈ ΡƒΠΌΠ°ΠΌΠΈ ΠΏΠ»Π°Π½Π΅Ρ‚Ρ‹ ΠΈ Π½Π΅ тСрпят Π½ΠΈΠΊΠ°ΠΊΠΈΡ… словСсных ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π»Π΅ΠΌΠΌΠ°

Π‘Ρ€Π΅Π΄ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ Ρ‚Π°ΠΊΠΈΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ сами ΠΏΠΎ сСбС Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΡΡ… Π·Π°Π΄Π°Ρ‡. Но ΠΈΡ… ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚Π΅ΠΎΡ€Π΅ΠΌ.

Π›Π΅ΠΌΠΌΠ° происходит ΠΎΡ‚ дрСвнСгрСчСского слова Β«lemmaΒ» – ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ слСдствиС Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ слСдствий ΠΈΠ· аксиомы ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых:

Если ΠΏΠΎΠ΄Ρ‹Ρ‚ΠΎΠΆΠΈΡ‚ΡŒ всС Π²Ρ‹ΡˆΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅, Ρ‚ΠΎ сравнивая Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ с высотным Π΄ΠΎΠΌΠΎΠΌ, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ:

КаТдая доказанная Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° слуТит основаниСм Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° для ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹. ИмСнно поэтому Ρ‚Π°ΠΊ Π²Π°ΠΆΠ½ΠΎ ΠΈΠ·ΡƒΡ‡Π°Ρ‚ΡŒ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, пСрСходя с самых основ (аксиом) ΠΊ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°ΠΌ.

НСвозмоТно ΠΏΠΎΠ½ΡΡ‚ΡŒ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ 9 ΠΈ 10 класса, Π½Π΅ Π²Ρ‹ΡƒΡ‡ΠΈΠ² аксиомы ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ 7 ΠΈ 8 класса.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ аксиома, Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°, слСдствиС

Π’ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΡ‹ рассмотрим, Ρ‡Ρ‚ΠΎ ΠΈΠ· сСбя ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ аксиомы, Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠΈ слСдствия. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‚ΡΡ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ для Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ понимания.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ аксиома

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ матСматичСскиС Π·Π°Π΄Π°Ρ‡ΠΈ, ΠΎΡ‡Π΅Π½ΡŒ часто трСбуСтся Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ логичСскиС дСйствия, благодаря ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ удаСтся ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ‚ΠΎ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅/Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ.

Но Π΅ΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Ρ‚Π°ΠΊΠΈΠ΅ утвСрТдСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ Π½ΠΈΠΊΠ°ΠΊΠΈΡ… Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π².

НапримСр:

Π­Ρ‚ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ утвСрТдСния, Π½Π΅ Π½ΡƒΠΆΠ΄Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Π² Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π΅ ΠΈ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΡ‹Π΅ Π² качСствС исходных Π² ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ аксиомами (ΠΎΡ‚ дрСвнСгрСчСского β€œaxioma”, Ρ‡Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ β€œΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅β€, β€œΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅β€). Иногда ΠΈΡ… Π΅Ρ‰Π΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ постулатами.

Аксиомы ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: Π½Π΅ допускаСтся искаТСниС Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΎΠΊ аксиом ΠΈ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌ, Ρ‚.Π΅. ΠΈΡ… Π½ΡƒΠΆΠ½ΠΎ ΡƒΡ‡ΠΈΡ‚ΡŒ Π½Π°ΠΈΠ·ΡƒΡΡ‚ΡŒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°

Π’ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ аксиомы, Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° – это суТдСниС, ΠΊΠΎΡ‚ΠΎΡ€Π΅ трСбуСтся Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ. Π’.Π΅. Π² рассматриваСмой Ρ‚Π΅ΠΎΡ€ΠΈΠΈ для Π½Π΅Π΅ Π΅ΡΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ.

НапримСр:

Π•ΡΡ‚ΡŒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π²ΠΈΠ΄ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Π΅ΠΎΡ€Π΅ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ сами ΠΏΠΎ сСбС Π½Π΅ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚Π΅ΠΎΡ€Π΅ΠΌ. Π˜Ρ… Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π»Π΅ΠΌΠΌΠ°ΠΌΠΈ (ΠΎΡ‚ дрСвнСгрСчСского β€œlemma”, Ρ‡Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ β€œΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅β€).

НапримСр:

Если ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… сомноТитСлСй дСлится Π½Π° простоС число p, Ρ‚ΠΎ ΠΏΠΎ ΠΊΡ€Π°ΠΉΠ½Π΅ΠΉ ΠΌΠ΅Ρ€Π΅ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· сомноТитСлСй дСлится Π½Π° p (Π»Π΅ΠΌΠΌΠ° Π•Π²ΠΊΠ»ΠΈΠ΄Π°).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ слСдствиС

БлСдствиС – это ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π±Ρ‹Π»ΠΎ Π²Ρ‹Π²Π΅Π΄Π΅Π½ΠΎ ΠΈΠ· аксиомы ΠΈΠ»ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹. И ΠΎΠ½ΠΎ, Ρ‚Π°ΠΊΠΆΠ΅, трСбуСтся Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°.

НапримСр:

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ГСомСтрия. 7 класс

ΠšΠΎΠ½ΡΠΏΠ΅ΠΊΡ‚ ΡƒΡ€ΠΎΠΊΠ°

Π‘ΠΌΠ΅ΠΆΠ½Ρ‹Π΅ ΠΈ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ ΡƒΠ³Π»Ρ‹. Аксиомы ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹

ΠŸΠ΅Ρ€Π΅Ρ‡Π΅Π½ΡŒ вопросов, рассматриваСмых Π² Ρ‚Π΅ΠΌΠ΅:

Π”Π²Π° ΡƒΠ³Π»Π°, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ΄Π½Π° сторона общая, Π° Π΄Π²Π΅ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ продолТСниями Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Π°, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ смСТными.

Бвойства смСТных ΡƒΠ³Π»ΠΎΠ²:

Π”Π²Π° ΡƒΠ³Π»Π° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ, Ссли стороны ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ продолТСниями сторон Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ.

Бвойство Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ²: Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹.

Аксиома– ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΠΎΠ΅ Π±Π΅Π· Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π².

ВСорСтичСский ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ изучСния

Π”Π°Π²Π°ΠΉΡ‚Π΅ построим Ρ€Π°Π·Π²Ρ‘Ρ€Π½ΡƒΡ‚Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» АОБ ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ Π² Π½Ρ‘ΠΌ Π»ΡƒΡ‡ ΠžΠ’. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρƒ нас ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ Π΄Π²Π° ΡƒΠ³Π»Π° βˆ ΠΠžΠ’ – острый ΡƒΠ³ΠΎΠ» ΠΈ βˆ Π’ΠžΠ‘β€“ Ρ‚ΡƒΠΏΠΎΠΉ ΡƒΠ³ΠΎΠ». Π‘Ρ‚ΠΎΡ€ΠΎΠ½Ρ‹ АО ΠΈ ОБ – ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡŽΡ‚ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Π°, Π’Πžβ€“ общая сторона. Π£Π³Π»Ρ‹ ΠΠžΠ’ ΠΈ Π’ΠžΠ‘ – это смСТныС ΡƒΠ³Π»Ρ‹. На основании этого сформулируСм ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ смСТных ΡƒΠ³Π»ΠΎΠ².

Π”Π²Π° ΡƒΠ³Π»Π°, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ΄Π½Π° сторона общая, Π° Π΄Π²Π΅ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ продолТСниями Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Π°, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ смСТными.

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

Π”Π°Π²Π°ΠΉΡ‚Π΅ Π΄ΠΎΠΊΠ°ΠΆΠ΅ΠΌ это свойство.

Π£ΠΊΠ°ΠΆΠ΅ΠΌ Π΅Ρ‰Ρ‘ ΠΎΠ΄Π½ΠΎ свойство смСТных ΡƒΠ³Π»ΠΎΠ².

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ построим Π΄Π²Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ прямыС, АБ ΠΈ BD. ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΡ‚Π΅, ΠΏΡ€ΠΈ пСрСсСчСнии прямых Ρƒ нас ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ ΡƒΠ³Π»Π°: βˆ ΠΠžΠ’, ∠АОD, ∠CОD, ∠BОC. Из Π½ΠΈΡ… ΠΏΠΎΠΏΠ°Ρ€Π½ΠΎ ΡΠ²Π»ΡΡŽΡ‚ΡΡ смСТными ΡƒΠ³Π»Ρ‹: βˆ ΠΠžΠ’ ΠΈ ∠АОD, ∠АОD ΠΈ ∠CОD, ∠CОD ΠΈ ∠BОC, βˆ ΠΠžΠ’ ΠΈ ∠BОC.

Π£Π³Π»Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ смСТными:

βˆ ΠΠžΠ’ ΠΈ ∠CОD; ∠АОD ΠΈ ∠BОC. ΠŸΠ°Ρ€Ρ‹ этих ΡƒΠ³Π»ΠΎΠ² Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡƒΠ³Π»Π°ΠΌΠΈ.

Π”Π²Π° ΡƒΠ³Π»Π° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ, Ссли стороны ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ продолТСниями сторон Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ.

Бвойство Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ²: Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹. УбСдимся Π² справСдливости этого свойства, Π΄ΠΎΠΊΠ°ΠΆΠ΅ΠΌ Π΅Π³ΠΎ.

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ. ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΠΌ Π½Π° Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆ: ΠΏΠ°Ρ€Ρ‹ ΡƒΠ³Π»ΠΎΠ² 1 ΠΈ 2, 2 ΠΈ 3, 3 ΠΈ 4, 4 ΠΈ 1– смСТныС ΡƒΠ³Π»Ρ‹. Π£Π³ΠΎΠ» 2 ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ являСтся смСТным с ΡƒΠ³Π»ΠΎΠΌ 1 ΠΈ с ΡƒΠ³Π»ΠΎΠΌ 3. По свойству смСТных ΡƒΠ³Π»ΠΎΠ²

Бвойства смСТных ΠΈ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΡ‹ сСгодня рассмотрСли– Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°ΠΌΠΈ. ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ утвСрТдСния ΠΎ свойствС Ρ‚ΠΎΠΉ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΉ гСомСтричСской Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ устанавливаСтся ΠΏΡƒΡ‚Ρ‘ΠΌ рассуТдСния. Π­Ρ‚ΠΎ рассуТдСниС называСтся Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠΌ. А само ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ доказываСтся, называСтся Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ.

На ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΡ… ΡƒΡ€ΠΎΠΊΠ°Ρ… Π²Ρ‹ познакомились с понятиСм аксиомы.

Π’ Ρ‡Ρ‘ΠΌ ΠΆΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ? ΠžΡ‚Π²Π΅Ρ‚ Π½Π° этот вопрос Ρ‚Π°ΠΊΠΎΠ²: аксиома – ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΠΎΠ΅ Π±Π΅Π· Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π².

Π Π°Π·Π±ΠΎΡ€ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Π½ΠΈΠΉ Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠ³ΠΎ модуля

β„–1. Π’ΠΈΠΏ задания: Π²Π²ΠΎΠ΄ с ΠΊΠ»Π°Π²ΠΈΠ°Ρ‚ΡƒΡ€Ρ‹ ΠΏΡ€ΠΎΠΏΡƒΡ‰Π΅Π½Π½Ρ‹Ρ… элСмСнтов Π² тСкстС.

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆ, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ ΡƒΠ³ΠΎΠ» βˆ Π’ΠžΠš.

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

β„–2. Π’ΠΈΠΏ задания: Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΉ / мноТСствСнный Π²Ρ‹Π±ΠΎΡ€.

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆ, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ ΡƒΠ³ΠΎΠ» ∠AOD.

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

β„–3. Π’ΠΈΠΏ задания: Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ†Π²Π΅Ρ‚ΠΎΠΌ.

Π’Ρ‹Π΄Π΅Π»ΠΈΡ‚Π΅ Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ ΠΈΠ· списка:

60 0 ; 30 0 ; 75 0 ; 90 0

Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ аксиомой ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Аксиома ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° 2021

Аксиома ΠΏΡ€ΠΎΡ‚ΠΈΠ² Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹

Основой аксиомы для Π΅Π³ΠΎ истины часто Π½Π΅ учитываСтся. Π­Ρ‚ΠΎ просто Ρ‚Π°ΠΊ, ΠΈ Π½Π΅Ρ‚ нСобходимости ΠΎΠ±ΡΡƒΠΆΠ΄Π°Ρ‚ΡŒ дальшС. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, ΠΌΠ½ΠΎΠ³ΠΈΠ΅ аксиомы ΠΏΠΎ-ΠΏΡ€Π΅ΠΆΠ½Π΅ΠΌΡƒ Π±Ρ€ΠΎΡΠ°ΡŽΡ‚ Π²Ρ‹Π·ΠΎΠ² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ ΡƒΠΌΠΎΠΌ, ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ врСмя ΠΏΠΎΠΊΠ°ΠΆΠ΅Ρ‚, ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π»ΠΈ ΠΎΠ½ΠΈ ΡΡƒΠΌΠ°ΡΡˆΠ΅ΡΡ‚Π²ΠΈΡΠΌΠΈ ΠΈΠ»ΠΈ гСниями.

Аксиомы ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ классифицированы ΠΊΠ°ΠΊ логичСскиС ΠΈΠ»ΠΈ Π½Π΅Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Π΅. ЛогичСскиС аксиомы ΡΠ²Π»ΡΡŽΡ‚ΡΡ общСпринятыми ΠΈ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€Π°ΠΌΠΈ, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Π½Π΅Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Π΅ аксиомы ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΡΠ²Π»ΡΡŽΡ‚ΡΡ логичСскими выраТСниями, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΌΠΈ ΠΏΡ€ΠΈ построСнии матСматичСских Ρ‚Π΅ΠΎΡ€ΠΈΠΉ.

Π“ΠΎΡ€Π°Π·Π΄ΠΎ Π»Π΅Π³Ρ‡Π΅ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ аксиому Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Аксиома часто являСтся ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ считаСтся истинным Ρ€Π°Π΄ΠΈ выраТСния логичСской ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Они ΡΠ²Π»ΡΡŽΡ‚ΡΡ основными ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π±Π»ΠΎΠΊΠ°ΠΌΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π². Аксиомы слуТат ΠΎΡ‚ΠΏΡ€Π°Π²Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ для Π΄Ρ€ΡƒΠ³ΠΈΡ… матСматичСских ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠΉ. Π­Ρ‚ΠΈ утвСрТдСния, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΈΠ· аксиом, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°ΠΌΠΈ.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ°, ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ, являСтся Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠΌ, основанным Π½Π° аксиомах, Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°Ρ… ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ мноТСствС логичСских связок. Π’Π΅ΠΎΡ€Π΅ΠΌΡ‹ часто ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ΡΡ строгими матСматичСскими ΠΈ логичСскими рассуТдСниями, ΠΈ процСсс ΠΊ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ, ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ, Π±ΡƒΠ΄Π΅Ρ‚ Π²ΠΊΠ»ΡŽΡ‡Π°Ρ‚ΡŒ Π² сСбя ΠΎΠ΄Π½Ρƒ ΠΈΠ»ΠΈ нСсколько аксиом ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ утвСрТдСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΠΆΠ΅ ΠΏΡ€ΠΈΠ·Π½Π°Π½Ρ‹ истинными.

Π’Π΅ΠΎΡ€Π΅ΠΌΡ‹ часто Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅, ΠΈ эти диффСрСнцирования ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚ΡΡ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠΌ выраТСния. Π”Π²Π΅ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π³ΠΈΠΏΠΎΡ‚Π΅Π·ΠΎΠΉ ΠΈ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ. Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ Ρ‡Π°Ρ‰Π΅ всСго ΠΎΡΠΏΠ°Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ, Ρ‡Π΅ΠΌ аксиомы, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ΠΈ ΠΏΠΎΠ΄Π²Π΅Ρ€ΠΆΠ΅Π½Ρ‹ Π±ΠΎΠ»ΡŒΡˆΠ΅ΠΌΡƒ количСству ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΉ ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ Π΄Π΅Ρ€ΠΈΠ²Π°Ρ†ΠΈΠΈ.

НСтрудно Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠΊΠ°ΠΊ аксиомы, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ утвСрТдСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ½Ρ‚ΡƒΠΈΡ‚ΠΈΠ²Π½ΠΎ ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚ΡΡ истинными. Однако ΠΎΠ½ΠΈ Π±ΠΎΠ»Π΅Π΅ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹, ΠΈΠ·-Π·Π° Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠ² Π΄Π΅Π΄ΡƒΠΊΡ†ΠΈΠΈ.

2. Аксиома часто самоочСвидна, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ часто ΠΏΠΎΡ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ΡΡ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ утвСрТдСния, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΈ аксиомы, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΡ‚Π°Ρ‚ΡŒ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ.

3. Π’Π΅ΠΎΡ€Π΅ΠΌΡ‹ СстСствСнно ΠΎΡΠΏΠ°Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ большС, Ρ‡Π΅ΠΌ аксиомы.

4. Π’ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ΅, Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ производятся ΠΈΠ· аксиом ΠΈ Π½Π°Π±ΠΎΡ€Π° логичСских связок.

5. Аксиомы ΡΠ²Π»ΡΡŽΡ‚ΡΡ основными ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π±Π»ΠΎΠΊΠ°ΠΌΠΈ логичСских ΠΈΠ»ΠΈ матСматичСских ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠΉ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ΠΈ слуТат ΠΎΡ‚ΠΏΡ€Π°Π²Π½Ρ‹ΠΌΠΈ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌ.

6. Аксиомы ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ классифицированы ΠΊΠ°ΠΊ логичСскиС ΠΈΠ»ΠΈ Π½Π΅Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Π΅.

7. Π”Π²Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π³ΠΈΠΏΠΎΡ‚Π΅Π·ΠΎΠΉ ΠΈ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *